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OF THE SPACE SHUTTLE MAIN ENGINE

T.H. Guo and J. Musgrave

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket

engine, the mixture ratio is closed loop controlled during mainstage (65% - 109% power)

operation. However, because of the lack of flight-capable instrumentation for measuring mixture

ratio, the value of mixture ratio in the control loop is estimated using available sensor

measurements such as the combustion chamber pressure and the volumetric flow, and the

temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme

has two limitations, First, the estimation formula is based on an empirical curve fitting which

is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on

a few sensor measurements and loss of any of these measurements will make the estimate invalid.

In this paper, we propose a neural network-based estimator for the mixture ratio of the Space

Shuttle Main Engine. The estimator is an extension of a previously developed neural network-

based sensor failure detection and recovery algorithm (sensor validation). This neural network

uses an autoassociative structure which utilizes the redundant information of dissimilar sensors

to detect inconsistent measurements. Two approaches have been identified for synthesizing

mixture ratio from measurement data using a neural network. The fu'st approach uses an

autoassociative neural network for sensor validation which is modified to include the mixture

ratio as an additional output. The second uses a new network for the mixture ratio estimation

in addition to the sensor validation network. Although mixture ratio is not directly measured in

flight, it is generally available in simulation and in tcstbed firing data from facility measurements

of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be

discussed in terms of robustness to sensor failures and accuracy of the estimate during typical

transients using simulation data.



INTRODUCTION

To assurereliableoperationof a complex dynamic system such as the Space Shuttle Main

Engine (SSME), redundant sensors are used for measuring critical variables. The redundancy

makes it possible to validate measured data, identify a sensor failure, and recover a measurement.

Previous studies on the sensor failure detection and accommodation using analytically redundant

sensor information can be found in [1,2,3]. The basic idea is to identify the sensor measurement

which is not consistent with the others. Once the situation is identified, the failed sensor

measurement is replaced by an estimated value generated by a model [I] or by a neural network

[2,3]. The autoassociative neural network sensor validation technique proposed in [3] has been

very effective for the variables directly measured.

In the SSME operation, one of the important performance parameters, combustion mixture

ratio, is not directly measurable. The current controller uses an empirical formula to estimate it.

There are two problems with this practice. First, the sensors used to calculate the mixture ratio

all become critical in the closed loop operation; a loss of any one of these sensors can lead to

a loss of the control of the engine. Second, the empirical estimation of the mixture ratio is only

accurate within a narrow range of operation.

In this paper, we p/resent a new estimator for the mixture ratio using neural networks.

The neural mixture ratio estimator is designed to be able to accommodate sensor failures and

provide accurate estimates across a wide range of operation. In this study we take advantage of

the fact that the actual mixture ratio, although not available in the flight operation, is readily

available in the testbed firing data. The actual mixture ratio information is also available in our

digital simulations of the SSME (Digital Transient Model or ADSIM model) [4]. This study uses

the simulation data generated by the SSME real-time model running on an AD100 computer to

test the feasibility of the proposed mixture ratio estimator.

RECOVERY OF CRITICAL MEASUREMENTS

In previous studies [2,3], feedforward neural networks with sigmoidal activation functions

have been used in sensor validation for a select group of sensors in the SSME flight

instrumentation. There are two approaches to sensor validation using neural networks. The ftrst

scheme is a two-step approach. A detection neural network is first used to detect the sensor

which is not consistent with other sensors and another group of networks is used to recover the



measurementsof the failed sensors. The second scheme utilizes one autoassociative neural

network with detection logic to do the sensor failure detection and isolation. Accommodation

is achieved by feeding back the estimated sensor values to replace the faulty measurements.

These two approaches have been successful for sensor validation in both simulation and hot fire

data. In these two studies, a group of sensors was selected because of the known inter-

dependency between its members. These sensors also cover the critical information that is used

in the control of the SSME during mainstage. The selected sensors are:

Main Combustion Cooling Pressure

Main Combustion Cooling Temperature

Low Pressure Fuel Pump exit flow, in volume

P6:

T6:

Qffm:

Pfd 1:

Tfdl:

Pfd2:

Sfl:

Sf2:

Pc:

Low Pressure

Low Pressure

High Pressure

Low Pressure

Fuel Pump exit Pressure

Fuel Pump exit Temperature

Fuel Pump exit Pressure

Fuel Turbopump Speed

High Pressure Fuel Turbopump Speed

Main Combustion Chamber Pressure

The current SSME operation requires the control of the thrust and combustion mixture

ratio. Engine thrust is controlled by the regulation of Pc (combustion chamber pressure) which

is directly related to the engine thrust. The combustion mixture ratio is the ratio of mass flows

of oxidizer and fuel, neither of them is directly measured in the flight configuration. The Block-

1 controller (as in the current SSME configuration) uses the following equations to estimate the

mixture ratio:

P H -- (kl +kzPfdl)x(Tfdl)2+(ks+k4Pfdl) xTfdl +ks+Pfdl

DW H = lqxQffmxpu

(Pc+klo)
MR E - 1

C2 ×DW H
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where Pc, Pfdl, Tfdl and Qffm are the sensor measurements defined in the previous section, Pa

is the estimated density of the fuel, DW a is the calculated fuel mass flow, C2 is the coefficient

used in the estimation of the oxidizer flow based on the chamber pressure measurement. MR E

is the estimated mixture ratio of the combustion process, and k i - k_o are constants.

Since all four sensor measurements used in the mixture ratio estimation axe covered in

the previous sensor list from the sensor validation studies, it can be assumed that the mixture

ratio can be recovered during a sensor failure. However, the estimated mixture ratio may not

accurately reflect the actual combustion mixture ratio because of the limitation of the empirical

estimation formula. Luckily, in the testbed firing, the true mixture ratio information can be

accurately calculated because of the extra instrumentation such as the oxidizer flow meter. Also,

in the computer simulation, the theoretical value of the mixture ratio is readily available. It is

the goal of this study to construct a mixture ratio estimator that is accurate across a wide range

of operation and robust to sensor failures.

NEURAL NETWORK ESTIMATORS

In the building of a neural network estimator for the mixture ratio of the SSME, there are

two approaches identified. The first approach expands the existing sensor validation network to

cover an additional output for the estimation of the mixture ratio. During the course of the study,

it was found that the additional information of two control valve positions -- Fuel Prebumer

Oxidizer Valve (FPOV) and Oxidizer Prebumer Oxidizer Valve (OPOV) -- are important in the

estimation of the mixture ratio. The neural network in Figure 1 shows the construction of the

approach. In Figure 1, S 1 to $9 represent the nine sensors selected in the previous studies and

O 1 to O9 represent their estimates respectively. The two additional inputs are OPOV and FPOV

positions, and the additional output is the mixture ratio estimate. The training data were

generated from the real-time SSME simulation for the start-up and down-thrust part of the

mainstage operation. It should be noted that the major part of the start-up operation is under

open loop control while mainstage operation is closed loop controlled on chamber pressure and

mixture ratio. The actual mixture ratio used in the training is defined as the theoretical value of

the ratio between oxidizer mass flow and the fuel mass flow.

The second approach is to use a separate neural network solely for the mixture ratio



estimation. This is similar to the chamber pressure recovery network described in a previous

study [2]. Again, two valve positions as well as the originally selected sensor measurements are

used to estimate the actual mixture ratio. Figure 2 shows the setup of this network in addition

to the sensor validation neural network. The network used here has an input layer with 11 nodes,

two hidden layers with 20 nodes each and an output node for the mixture ratio estimate.

In this study, the training set of the neural network is generated by the dynamic simulation

of the SSME on the ADI00 computer. The data include start-up transient, the 100% operation

and a portion of the down-thrust'operation. The back propagation algorithm is used to adjust the

weights of the neural network connections. The training procedure is as follows:

robust

(1) randomly select one data set from the training data sets,

(2) randomly select several (number between 0 and 4) failed sensors among S1 to S9,

(3) for each failed sensor select a random value (between 0 and 1) as the input to the neural

network to simulate the failed condition of that sensor,

(4) use the back-propagation algorithm to adjust the weights so that the output of the network

will match the desired parameters.

(5) repeat steps (1) to (4) until the network converges.

The randomization of the training process has been very effective in the training of a

estimator that will be insensitive to the sensor failure condition.

SIMULATION RESULTS

Case 1 ."Expansion of the Sensor Validation Network

In this case, there are 11 inputs to the neural network: 9 sensor measurements and 2 valve

positions; and I0 outputs: 9 estimates for corresponding sensor measurements and a mixture ratio

estimate. After the training, the network was tested for the simulated condition that there are

sensor failures while the engine is going through the max-Q operation where engine thrust is

reduced to 65% for a period of time during the mainstage operation before it returns to 100%

power operation. The sensor failures selected for testing in this case are the failures of Pc and

Qffm. Under the current SSME practice, these two sensor failures will make it impossible for

the current controller to perform because of the loss of the required information. Figure 3 and

4 show the results of the neural network recovery of these failed sensors. Figure 5 shows the

comparison of the neural network mixture ratio estimate and the estimated mixture ratio used by

5



the Block-I controllerduring the testedcondition. The Block-1 controller calculation uses the

actual sensor data before any sensor failure and uses the estimate from the neural network instead

of the faulty data once a failure is detected. It should be noted that the "theoretical" mixture ratio

used here is the mass flow ratio of the oxidizer and the fuel in the real-time simulation which

may not be the "actual" combustion mixture ratio in the combustion chamber. It can be seen that

the neural network provides a fairly reasonable estimation during these sensor failure conditions

while the Block-1 controller estimation is very sensitive to any sensor failure and also sensitive

to the error in the estimated values provided by the sensor validation network.

Case 2: Separate Network for Mixture Ratio Estimates

Here, along with the previously def'med autoassociative neural network which has 9 inputs

and 9 outputs, a second neural network with 11 inputs (9 sensor measurements and 2 valve

positions) and 1 output (the mixture ratio estimate) was used. The training data were the same

as those used in case 1. After the training, the network was also tested for the max-Q operation

with sensor failures as in case 1. Figure 6 shows the comparison of the neural network mixture

ratio estimate and the calculated mixture ratio used by the Block-1 controller during the tested

condition. Again, it is easy to see that the neural network estimator can provide an accurate

estimate of the mixture ratio while maintaining its validity during the period required for the

sensor failure detection and recovery.

CONCLUSIONS

Neural networks are proposed to provide mixture ratio estimates that are accurate across

the range of operation and remain valid even with some of the sensors failed. The

autoassociative neural network used in a previous study to provide the basic network for sensor

validation (failure detection and recovery) was extended. Two approaches to extend the sensor

validation network were employed. The f'u'st approach was to increase the number of inputs to

include the valve information and add a network output to cover the estimation of mixture ratio.

The second approach was to build a separate network for mixture ratio estimation and use the

original network purely for sensor validation. The results show that both approaches performed

reasonably well under the test conditions. However, the second approach (separate network)

provides a slightly better estimate on the max-Q down thrust operation.

Future research includes the extension of the neural network to cover more measurements

6



from the oxidizer side of the engine in order to provide more related information for mixture

ratio estimation, and to test the neural network estimator during closed loop control.
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